

CE EMC Test Report

Report No.: CE141111C02

Test Model: SPC-2845

Series Model: Vecow SPC Series, SPC-2145, SPC-2845-W4, SPC-2845X, SPC-2845R,

SPC-2845D, SPC-XXXXXXXXXXX ("X" can be 0-9, A-Z or blank for

marketing purpose)

Received Date: Nov. 11, 2014

Test Date: Nov. 19 ~ Dec. 11, 2014

Issued Date: Dec. 25, 2014

Applicant: Vecow Co., Ltd.

Address: 12F., No. 111, Zhongcheng Rd., Tucheng Dist., New Taipei City 23674

Taiwan (R. O. C.)

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 19, Hwa Ya 2nd Rd., Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan

Hsien 333, Taiwan

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Report No.: CE141111C02 Page No. 1 / 76 Report Format Version: 6.1.1

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Rele	Release Control Record		
1	Certificate of Conformity	6	
2	Summary of Test Results	7	
2.1	Measurement Uncertainty		
2.2			
3	General Information		
3.1	Features of EUT		
3.2 3.3	and the second s		
3.4			
3.5			
3.6			
4	Configuration and Connections with EUT	12	
4.	Connection Diagram of EUT and Peripheral Devices		
4.2	2		
5	Conducted Disturbance at Mains Ports	19	
5.	Limits		
5.2 5.3			
5.4	· · · · · · · · · · · · · · · · · · ·		
6	Conducted Disturbance at Telecommunication Ports		
6.1	Limits		
6.2			
6.3			
6.4 6.5			
7	Radiated Disturbance up to 1 GHz		
7.1 7.2	Limits Test Instruments		
7.3			
7.4			
8	Radiated Disturbance above 1 GHz	35	
8.1	Limits	35	
8.2			
8.3			
8.4			
9	Harmonics Current Measurement		
9. ²	Limits		
9.2	· ·		
9.4			
9.5	Test Results	41	
10	Voltage Fluctuations and Flicker Measurement	42	
10			
10			
10	3 Test Arrangement	42	

10	.4	Test Results	43
11	Gen	eral Immunity Requirements	44
11	.1	Performance Criteria	45
12	Elec	etrostatic Discharge Immunity Test (ESD)	47
12	.1	Test Specification	47
12		Test Instruments	47
12 12	-	Test Arrangement	
		iated, Radio-frequency, Electromagnetic Field Immunity Test (RS)	
13 13		Test Specification Test Instruments	
13		Test Arrangement	
13	-	Test Results	
14	Elec	trical Fast Transient/Burst Immunity Test (EFT)	55
14		Test Specification	
14		Test Instruments	
14	.3	Test Arrangement	
14	.4	Test Results	56
15	Sur	ge Immunity Test	57
15	.1	Test Specification	57
15		Test Instruments	
15		Test Arrangement	
15		Test Results	
		unity to Conducted Disturbances Induced by RF Fields (CS)	
16		Test Specification	
16 16		Test Instruments	
16	-	Test Results	
17	Pow	ver Frequency Magnetic Field Immunity Test	63
17	.1	Test Specification	63
17		Test Instruments	63
17		Test Arrangement	
17		Test Results	
18	Volt	age Dips and Interruptions	65
18		Test Specification	
18		Test Instruments	
18 18		Test Arrangement	
		ures of Test Arrangements	
19		Conducted Disturbance at Mains Ports	
19	.2	Conducted Disturbance at Telecommunication Ports	
19		Radiated Disturbance up to 1 GHz	
19		Radiated Disturbance above 1 GHz	
19 19		Harmonics Current, Voltage Fluctuations and Flicker Measurement	
19		Radio-frequency, Electromagnetic Field Immunity Test (RS)	72
19		Electrical Fast Transient/Burst Immunity Test (EFT)	
19		Surge Immunity Test	73
19	.10	Conducted Disturbances Induced by RF Fields (CS)	74

19.11 Power Frequency Magnetic Field Immunity Test (PFMF)	75
19.12 Voltage Dips and Interruptions	
Appendix – Information on the Testing Laboratories	76

Release Control Record

Issue No.	Description	Date Issued
CE141111C02	Original release.	Dec. 25, 2014

1 Certificate of Conformity

Product: Ultra-Compact Embedded System

Brand: Vecow

Test Model: SPC-2845

Series Model: Vecow SPC Series, SPC-2145, SPC-2845-W4, SPC-2845X, SPC-2845R,

SPC-2845D, SPC-XXXXXXXXXXXXXXXXXXXXX ("X" can be 0-9, A-Z or blank for marketing

purpose)

Sample Status: Engineering sample

Applicant: Vecow Co., Ltd.

Test Date: Nov. 19 ~ Dec. 11, 2014

Standards: EN 55022:2010 +AC:2011, Class A

EN 61000-3-2:2006 +A1:2009 +A2:2009, Class D

EN 61000-3-3:2013

EN 55024:2010

EN 61000-4-2:2009

EN 61000-4-3:2006 +A1:2008 +A2:2010

EN 61000-4-4:2012

EN 61000-4-5:2006

EN 61000-4-6:2014

EN 61000-4-8:2010

EN 61000-4-11:2004

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Suntee Liu / Specialist

Approved by: Dec. 25, 2014

Ken Liu / Senior Manager

2 Summary of Test Results

Emission				
Standard	Clause	Test Item	Result/Remarks	Verdict
EN 55022:2010 +AC:2011	5.1	Mains terminal disturbance voltage	Minimum passing Class A margin is -26.32 dB at 0.15391 MHz	Pass
EN 55022:2010 +AC:2011	5.2	Conducted common mode (asymmetric mode) disturbance at telecommunication ports	Minimum passing Class A margin is -7.27 dB at 0.22812 MHz	Pass
EN 55022:2010 +AC:2011	6.1	Radiated disturbance 30-1000 MHz	Minimum passing Class A margin is -5.07 dB at 770.00 MHz	Pass
EN 55022:2010 +AC:2011	6.2	Radiated disturbance above 1GHz	Minimum passing Class A margin is -16.34 dB at 1539.98 MHz	Pass
EN 61000-3-2:2006 +A1:2009 +A2:2009	-	Harmonic current emissions	Class D	Pass
EN 61000-3-3:2013	-	Voltage fluctuations and flicker	$\begin{array}{ll} P_{st} \leq 1.0 & d_{max} \leq 4\% \\ P_{lt} \leq 0.65 & d_c \leq 3.3\% \\ T_{max} \leq 500ms \end{array}$	Pass

	Immunity			
EN 55024 Clause	Basic standard	Test Item	Result/Remarks	Verdict
4.2.1	EN 61000-4-2:2009	Electrostatic discharges (ESD)	Performance Criterion B	Pass
4.2.3.2	EN 61000-4-3:2006 +A1:2008 +A2:2010	Continuous radiated disturbances (RS)	Performance Criterion A	Pass
4.2.2	EN 61000-4-4:2004 EN 61000-4-4:2012*	Electrical fast transients (EFT)	Performance Criterion A	Pass
4.2.5	EN 61000-4-5:2006	Surges	Performance Criterion A	Pass
4.2.3.3	EN 61000-4-6:2009 EN 61000-4-6:2014*	Continuous conducted disturbances (CS)	Performance Criterion A	Pass
4.2.4	EN 61000-4-8:2010	Power-frequency magnetic fields (PFMF)	Performance Criterion A	Pass
4.2.6	EN 61000-4-11:2004	Voltage dips and interruptions	Voltage Dips: >95% reduction – 0.5 period, Performance Criterion A 30% reduction – 25 periods, Performance Criterion A Voltage Interruptions: >95% reduction – 250 periods, Performance Criterion C	Pass

^{*} Both of specific and the latest version of the basic standard are referenced to fulfill the requirements.

Note: There is no deviation to the applied test methods and requirements covered by the scope of this report.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

Measurement	Expended Uncertainty (k=2) (±)	Maximum allowable uncertainty (±)
Conducted disturbance at mains port using AMN, 150kHz ~ 30MHz	2.44 dB	3.4 dB (<i>U</i> _{cispr})
Conducted disturbance at telecommunication port using CP, 150kHz ~ 30MHz	2.86 dB	2.9 dB (<i>U</i> _{cispr})
Radiated disturbance, 30MHz ~ 1GHz	4.70 dB	6.3 dB (<i>U</i> _{cispr})
Radiated disturbance, 1GHz ~ 6GHz	2.29 dB	5.2 dB (<i>U</i> _{cispr})

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 Features of EUT

The tests reported herein were performed according to the method specified by Vecow Co., Ltd., for detailed feature description, please refer to the manufacturer's specifications or user's manual.

3.2 General Description of EUT

Product	Ultra-Compact Embedded System
Brand	Vecow
Test Model	SPC-2845
Series Model	Vecow SPC Series, SPC-2145, SPC-2845-W4, SPC-2845X, SPC-2845R, SPC-2845D, SPC-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Model Difference	Refer to Note
Sample Status	Engineering sample
Operating Software	Win 7
Power Supply Rating	12Vdc (adapter)
Accessory Device	Adapter
Data Cable Supplied	NA

Note:

1. The EUT uses following adapter.

	J
Brand	Seasonic
Model	SSA-0601D-12
Input Power	100-240Vac, 2A, 50/60Hz
Output Power	+12Vdc, 5A, 60W Max
Power Line	1m DC cable with 1 core attached on adapter

2. All models are electrically identical, different model names are for marketing purpose. Model SPC-2845 is the representative for final test.

Brand	Model
	Vecow SPC Series
	SPC-2845
	SPC-2145
\/aaa	SPC-2845-W4
Vecow	SPC-2845X
	SPC-2845R
	SPC-2845D
	SPC-XXXXXXXXX ("X" can be 0-9, A-Z or blank for marketing purpose)

Operating Modes of EUT and Determination of Worst Case Operating Mode 3.3

The EUT is designed with AC power adapter of rating 100-240Vac, 50/60Hz.

For radiated emission evaluation, 230Vac/50Hz (for EN 55022 & EN 55011) & 120Vac/60Hz (for FCC Part 15) had been covered during the pre-test. The worst data was found at 230Vac/50Hz and recorded in the applied test report.

EUT has been pre-tested under following test modes, and test mode 1 was the worst case for final test.

	Mode	Test Condition
	1	DVI 1920*1200@60Hz, LAN 1 1Gbps, LAN 2 1Gbps, 230Vac/50Hz
	2	DVI 1280*1024@60Hz, LAN 1 1Gbps, LAN 2 1Gbps, 230Vac/50Hz
	3	DVI 800*600@60Hz, LAN 1 1Gbps, LAN 2 1Gbps, 230Vac/50Hz
	4	DVI 1920*1200@60Hz, LAN 1 1Gbps, LAN 2 1Gbps, 120Vac/60Hz

l est mo	est modes are presented in the report as below.				
Mode	Test Condition				
	Conducted emission test				
-	DVI 1920*1200@60Hz, LAN 1 1Gbps, LAN 2 1Gbps				
	Conducted emission at telecom port test				
-	DVI 1920*1200@60Hz, LAN 1 & 2 10Mbps/100Mbps/1Gbps				
The idle	mode of conducted emission test at telecom port was pre-tested based on the worst case of link				
mode. D	mode. Due to emissions of idle mode being very low compared to link mode, only the link mode data were				
presente	presented in the test report.				
	Radiated emission test				
-	DVI 1920*1200@60Hz, LAN 1 1Gbps, LAN 2 1Gbps				
	Harmonics, Flicker, Immunity tests				
_	DVI 1920*1200@60Hz, LAN 1 1Gbps, LAN 2 1Gbps				

Test Program Used and Operation Descriptions

Emission tests (Harmonics & Flicker excluded):

- a. EUT sent "H" patterns to monitor and monitor displayed them.
- b. EUT sent "H" patterns to printer and printer printed them.
- c. EUT sent "H" patterns to modems.
- d. EUT performed R/W function with HDD.
- e. EUT sent audio signal to earphone.
- f. EUT linked with notebooks through LAN.

Harmonics, Flicker, Immunity tests:

- a. EUT sent "H" patterns to monitor and monitor displayed them.
- b. EUT sent "H" patterns to modems.
- c. EUT performed R/W function with HDDs.
- d. EUT sent audio signal to earphone.
- e. EUT linked with notebooks through LAN.

3.5 **Primary Clock Frequencies of Internal Source**

The highest frequency generated or used within the EUT or on which the EUT operates or tunes is 1.91 GHz, provided by Vecow Co., Ltd., for detailed internal source, please refer to the manufacturer's specifications.

3.6 Miscellaneous

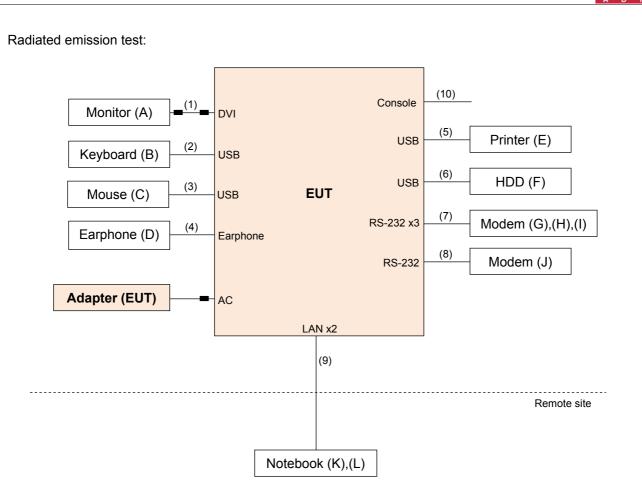
> Affix CE marking

The marking must be placed visibly and legibly on the product or, if not possible due to the nature of the product, be affixed to the packaging and the accompanying document. The CE marking shall consist of the initials 'CE' taking the following form:

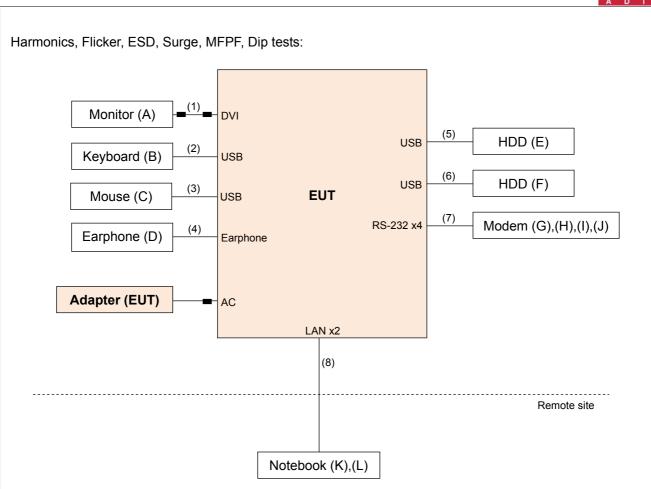
The various components of the CE marking must have the same vertical dimension, and may not be smaller than 5 mm. If the CE marking is reduced or enlarged, the proportions given in the graduated drawing above must be respected.

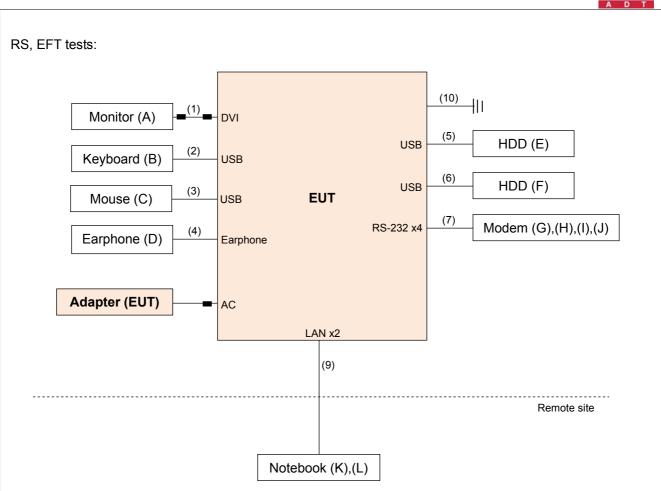
When the product is subject to other Directives covering other aspects and which also provide for the 'CE' marking, the accompanying documents must indicate that the product also conforms to those other Directives.

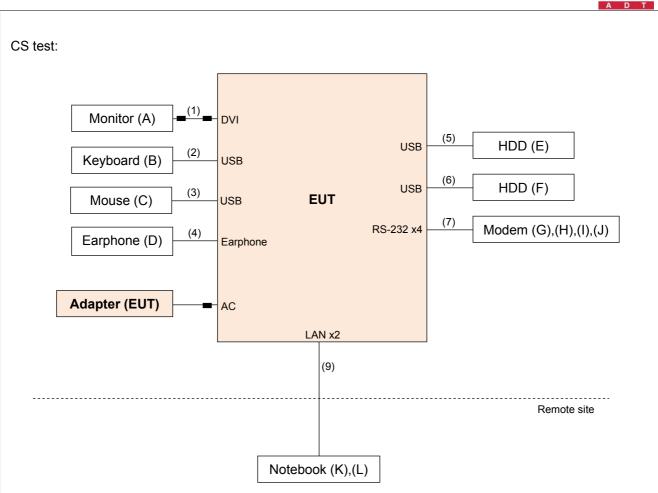

However, when one or more of those Directives allow the manufacturer, during a transitional period, to choose which arrangements to apply, the 'CE' marking has to indicate conformity only with the Directives applied by the manufacturer. In this case, the particularities of the Directives applied, as published in the Official Journal of the European Union, must be given in the documents, notices or instructions required by the Directives and accompanying such products.


4 Configuration and Connections with EUT

4.1 Connection Diagram of EUT and Peripheral Devices


Conducted emission, Conducted emission at telecom port tests:





4.2 Configuration of Peripheral Devices and Cable Connections

Emission tests (Harmonics & Flicker excluded):

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	24" LCD MONITOR	DELL	U2410	CN082WXD-72872-0C R-06DL	FCC DoC Approved	-
В.	Keyboard	DELL	KB4021	CN-05V23T-71581-1A K-01Q2-A01	FCC DoC Approved	-
C.	MOUSE	DELL	MS111-P	CN-011D3V-71581-1C J-0195	FCC DoC Approved	-
D.	EARPHONE	PHILIPS	HL145	NA	NA	-
E.	PRINTER	EPSON	T22	MEEZ070220	FCC DoC Approved	-
F.	External Hard Disk	WD	WDBACY5000ABL -01	WX51C12T6215	NA	-
G.	MODEM	ACEEX	1414V/3	0401008278	IFAXDM1414	-
H.	MODEM	ACEEX	1414V/3	0401008252	IFAXDM1414	-
I.	MODEM	ACEEX	1414V/3	0401008241	IFAXDM1414	-
J.	MODEM	ACEEX	1414V/3	0401008279	IFAXDM1414	-
K.	Notebook	DELL	Latitude E6420	HPFC5Q1	FCC DoC Approved	-
L.	Notebook	DELL	PP02X	W4TYK9CQCJ3K3KC BRXTRFWYRB	QDS-BRCM1005-D	-

Note

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Items K~L acted as communication partners to transfer data.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DVI	1	1.8	Υ	2	Provided by manufacturer
2.	USB	1	1.8	Υ	0	-
3.	USB	1	1.8	Υ	0	-
4.	Earphone	1	1.2	N	0	-
5.	USB	1	1.8	Υ	0	-
6.	USB	1	0.5	Υ	0	-
7.	RS-232	3	1.2	Υ	0	-
8.	RS-232	1	1.5	Υ	0	-
9.	RJ45, Cat5e	2	10	N	0	Only for Radiated emission test
10.	RS-232	1	2	Υ	0	-
11.	RJ45, Cat5e	2	10	Υ	0	Only for Conducted emission test

Note: The core(s) is(are) originally attached to the cable(s).

Harmonics, Flicker, Immunity tests:

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	24" LCD Monitor	DELL	2407WFPb	CN-0YY528-46633-76I -1E7S	FCC DoC Approved	-
В.	Keyboard	DELL	KB4021	CN-05V23T-71581-1A K-01KZ-A01	FCC DoC Approved	-
C.	MOUSE	DELL	MS111-P	CN-011D3V-71581-1C J-093U	FCC DoC Approved	-
D.	Earphone	PHILIPS	SHM2100U	03	NA	-
E.	Hard Disk	ADATA	HV620	1E3620122277	NA	-
F.	Hard Disk	ADATA	HV620	1E3620122297	NA	-
G.	MODEM	ACEEX	1414V/3	0401008252	IFAXDM1414	-
H.	MODEM	ACEEX	1414V/3	0401008253	IFAXDM1414	-
I.	MODEM	ACEEX	1414V/3	0401008270	IFAXDM1414	-
J.	MODEM	ACEEX	1414V/3	0401008268	IFAXDM1414	-
K.	Notebook	Dell	E5420	55CD5S1	FCC DoC Approved	-
L.	Notebook	Dell	E5420	55CF4S1	FCC DoC Approved	-

Note:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Items K~L acted as communication partners to transfer data.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DVI	1	1.8	Υ	2	Provided by manufacturer
2.	USB	1	1.8	Y	0	-
3.	USB	1	1.8	Y	0	-
4.	Earphone	1	1.9	N	0	-
5.	USB	1	0.3	Y	0	-
6.	USB	1	0.3	Y	0	-
7.	RS-232	4	1.6	Y	0	-
8.	RJ45, Cat5e	2	10	N	0	Only for Harmonics, Flicker, ESD, Surge, MFPF, Dip tests
9.	RJ45, Cat5e	2	10	Y	0	Only for RS, EFT, CS tests
10.	Ground	1	1.8	Y	0	Only for RS, EFT tests

Note: The core(s) is(are) originally attached to the cable(s).

5 Conducted Disturbance at Mains Ports

5.1 Limits

Frequency (MHz)	Class A	(dBuV)	Class B (dBuV)		
Frequency (Miriz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

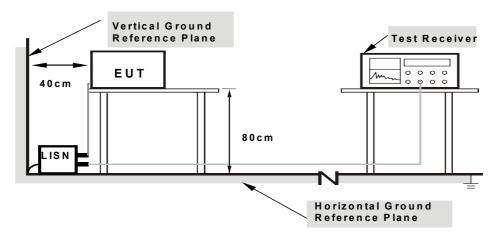
Notes: 1. The lower limit shall apply at the transition frequencies.

5.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESCS30	100288	Apr. 24, 2014	Apr. 23, 2015
RF signal cable Woken	5D-FB	Cable-HYCO2-01	Dec. 27, 2013	Dec. 26, 2014
LISN ROHDE & SCHWARZ (EUT)	ESH2-Z5	100100	Dec. 23, 2013	Dec. 22, 2014
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100312	Jul. 10, 2014	Jul. 09, 2015
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

Notes: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 2.
- 3. The VCCI Site Registration No. is C-2047.


^{2.} The limit decreases linearly with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

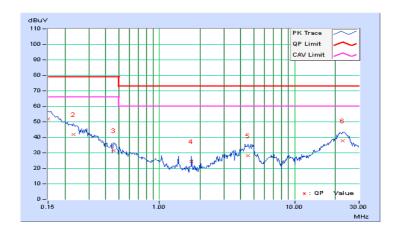
5.3 Test Arrangement

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The test results of conducted emissions at mains ports are recorded of six worst margins for quasi-peak (mandatory) [and average (if necessary)] values against the limits at frequencies of interest unless the margin is 20 dB or greater.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes



5.4 Test Results

Frequency Range	150kHz ~ 30MHz	Detector Function & Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	230Vac - 50Hz	Environmental Conditions	23℃, 64%RH
Tested by	Scott Yang	Test Date	2014/11/21

	Phase Of Power : Line (L)									
	Frequency	Correction	Readin	Reading Value		Emission Level		nit	Margin	
No		Factor	(dB	uV)	(dB	uV)	(dBuV)		(dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	0.26	51.69	36.26	51.95	36.52	79.00	66.00	-27.05	-29.48
2	0.23203	0.28	41.44	29.27	41.72	29.55	79.00	66.00	-37.28	-36.45
3	0.45859	0.30	31.22	23.42	31.52	23.72	79.00	66.00	-47.48	-42.28
4	1.73047	0.35	24.10	22.57	24.45	22.92	73.00	60.00	-48.55	-37.08
5	4.51953	0.44	27.71	19.99	28.15	20.43	73.00	60.00	-44.85	-39.57
6	22.74609	0.56	37.15	31.66	37.71	32.22	73.00	60.00	-35.29	-27.78

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Frequency Range	150kHz ~ 30MHz	Detector Function & Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	230Vac [,] 50Hz	Environmental Conditions	23℃, 64%RH
Tested by	Scott Yang	Test Date	2014/11/21

	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor		J				nit uV)	Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15391	0.27	51.24	39.41	51.51	39.68	79.00	66.00	-27.49	-26.32
2	0.20469	0.28	44.24	30.89	44.52	31.17	79.00	66.00	-34.48	-34.83
3	0.47813	0.31	29.45	23.73	29.76	24.04	79.00	66.00	-49.24	-41.96
4	1.38672	0.35	24.68	24.09	25.03	24.44	73.00	60.00	-47.97	-35.56
5	4.70313	0.45	31.57	20.88	32.02	21.33	73.00	60.00	-40.98	-38.67
6	22.33203	0.61	35.93	30.10	36.54	30.71	73.00	60.00	-36.46	-29.29

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

6 Conducted Disturbance at Telecommunication Ports

6.1 Limits

For Class A Equipment

Frequency	Voltage Lii	mit (dBuV)	Current limits (dBuA)		
(MHz)	Quasi-peak Average		Quasi-peak	Average	
0.15-0.5	97-87 84-74		53-43	40-30	
0.5-30	87	74	43	30	

Note: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

For Class B Equipment

Frequency	Voltage Li	mit (dBuV)	Current limits (dBuA)		
(MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15-0.5	84-74	74-64	40-30	30-20	
0.5-30	74	64	30	20	

Note: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

6.2 Test Instruments

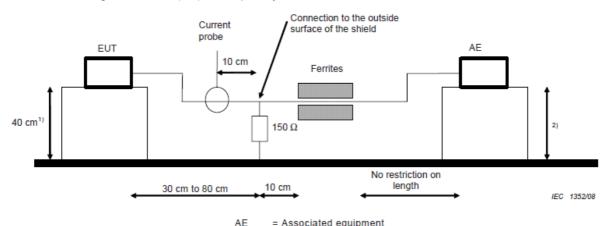
Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due	
Test Receiver ROHDE & SCHWARZ	ESCS30	100288	Apr. 24, 2014	Apr. 23, 2015	
RF signal cable Woken	5D-FB	Cable-cond2-01	Dec. 27, 2013	Dec. 26, 2014	
LISN ROHDE & SCHWARZ (EUT)	ESH2-Z5	100100	Dec. 23, 2013	Dec. 22, 2014	
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100312	Jul. 10, 2014	Jul. 09, 2015	
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA	
ISN	FCC-TLISN-T2-02-09	091434	Sep. 15, 2014	Sep. 14, 2015	
ISN	F-071115-1057-1-09	100855	Jul. 29, 2014	Jul. 28, 2015	
Capacitive Voltage Probe	F-CVP-1	82	Jul. 07, 2014	Jul. 06, 2015	
RF Current Probe	F-33-4	45	Feb. 10, 2014	Feb. 09, 2015	
Coupling And Decoupling Network	CDN RJ45-S	07	Jul. 20, 2014	Jul. 19, 2015	

Notes: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 2.
- 3. The VCCI Site Registration No. is T-1654.

6.3 Test Arrangement

Method of Annex C.1.2 Using a 150 Ω load to the outside surface of the shield:


- a. Break the insulation and connect a 150 Ω resistor from the outside surface of the shield to ground.
- b. Apply a clamp between 150Ω connection and associated equipment.
- c. Current probe shall be placed at 0.1 m from the ISN.
- d. Measure current with a current probe and compare to the current limit.

Voltage measurement is also possible either in parallel with the 150 Ω resistor with a high impedance probe. (only for a high impedance probe applied, replaced d. if this is the case)

Voltage measurement by using a "50 Ω to 150 Ω adaptor" described in IEC 61000-4-6 as 150 Ω load, and applying the appropriate correction factor (9,6 dB in case of the "50 Ω to 150 Ω adaptor"). (only for 50 Ω to 150 Ω adaptor applied, replaced d. if this is the case.)

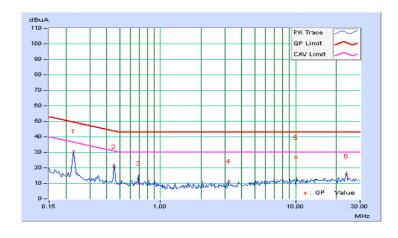
e. The test results of disturbance at telecommunication ports are recorded of six worst margins for quasi-peak (mandatory) [and average (if necessary)] values against the limits at frequencies of interest unless the margin is 20 dB or greater.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

- EUT = Equipment under test
- 1) Distance to the reference groundplane (vertical or horizontal).
- 2) Distance to the reference groundplane is not critical.

6.4 Supplementary Information

The condition of LAN utilization in excess of 10 % and sustaining that level for a minimum of 250 ms is created by command TFGEN.

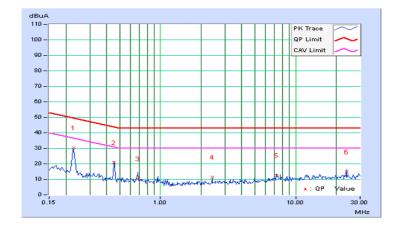


6.5 Test Results

Frequency Range	150kHz ~ 30MHz	Detector Function & Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz			
Input Power	230Vac [,] 50Hz	Environmental Conditions	20℃, 60%RH			
Tested by	Daniel Lin Test Date 2014/11/25					
Test Mode	LAN port 1 with Current Probe (10Mbps, TFGEN)					

No	Frequency	Correction Factor		g Value uA)		n Level uA)		nit uA)	Maı (d	rgin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.22812	0.70	29.93	28.21	30.63	28.91	49.52	36.52	-18.89	-7.61
2	0.45469	0.42	20.41	16.61	20.83	17.03	43.79	30.79	-22.96	-13.76
3	0.68516	0.34	9.84	9.44	10.18	9.78	43.00	30.00	-32.82	-20.22
4	3.19531	0.36	11.30	10.20	11.66	10.56	43.00	30.00	-31.34	-19.44
5	10.00000	0.57	25.98	18.96	26.55	19.53	43.00	30.00	-16.45	-10.47
6	23.91016	0.54	14.17	13.21	14.71	13.75	43.00	30.00	-28.29	-16.25

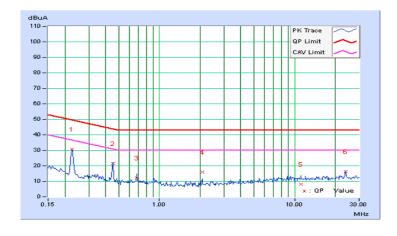
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz			
Input Power	230Vac [,] 50Hz	Environmental Conditions	20℃, 60%RH			
Tested by	Daniel Lin Test Date 2014/11/25					
Test Mode	LAN port 1 with Current Probe (100Mbps, TFGEN)					

No	Frequency	Correction Factor		g Value uA)		n Level uA)	Lir (dB	nit		rgin B)
INO	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.22812	0.70	29.83	28.01	30.53	28.71	49.52	36.52	-18.99	-7.81
2	0.45469	0.42	20.22	19.35	20.64	19.77	43.79	30.79	-23.15	-11.02
3	0.68125	0.34	10.07	9.74	10.41	10.08	43.00	30.00	-32.59	-19.92
4	2.41016	0.33	11.30	10.40	11.63	10.73	43.00	30.00	-31.37	-19.27
5	7.26172	0.43	12.00	9.50	12.43	9.93	43.00	30.00	-30.57	-20.07
6	23.91016	0.54	14.18	13.37	14.72	13.91	43.00	30.00	-28.28	-16.09

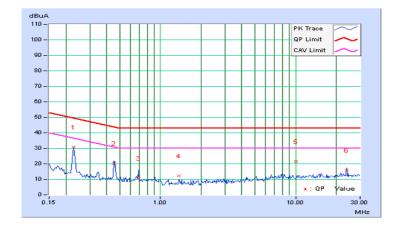
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz			
Input Power	230Vac [,] 50Hz	Environmental Conditions	20℃, 60%RH			
Tested by	Daniel Lin Test Date 2014/11/25					
Test Mode	LAN port 1 with Current Probe (1Gbps, TFGEN)					

No	Frequency	Correction Factor		g Value uA)		n Level uA)		nit uA)		rgin B)
INO	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
	(IVII IZ)	(ub)	Q.F.	Av.	Q.F.	Av.	Q.F.	Av.	Q.F.	Av.
1	0.22493	0.70	30.13	28.47	30.83	29.17	49.63	36.63	-18.81	-7.47
2	0.45078	0.42	21.06	19.29	21.48	19.71	43.86	30.86	-22.38	-11.15
3	0.67734	0.34	12.05	11.11	12.39	11.45	43.00	30.00	-30.61	-18.55
4	2.07031	0.32	15.43	10.77	15.75	11.09	43.00	30.00	-27.25	-18.91
5	11.13281	0.56	7.70	6.69	8.26	7.25	43.00	30.00	-34.74	-22.75
6	23.90625	0.54	15.73	13.97	16.27	14.51	43.00	30.00	-26.73	-15.49

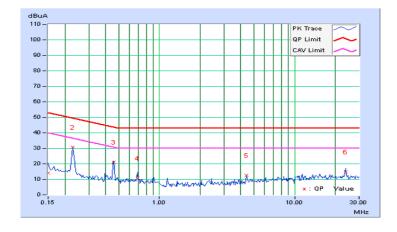
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz			
Input Power	230Vac [,] 50Hz	Environmental Conditions	20℃, 60%RH			
Tested by	Daniel Lin Test Date 2014/11/25					
Test Mode	LAN port 2 with Current Probe (10Mbps, TFGEN)					

No	Frequency	Correction Factor		g Value uA)		n Level uA)	Lir (dB	nit uA)	Maı (d	rgin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.22812	0.70	30.11	27.47	30.81	28.17	49.52	36.52	-18.71	-8.35
2	0.45469	0.42	20.06	19.44	20.48	19.86	43.79	30.79	-23.31	-10.93
3	0.68516	0.34	10.43	10.16	10.77	10.50	43.00	30.00	-32.23	-19.50
4	1.37109	0.32	12.00	5.99	12.32	6.31	43.00	30.00	-30.68	-23.69
5	10.00000	0.57	20.78	15.71	21.35	16.28	43.00	30.00	-21.65	-13.72
6	23.90625	0.54	15.47	13.73	16.01	14.27	43.00	30.00	-26.99	-15.73

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz			
Input Power	230Vac [,] 50Hz	Environmental Conditions	20℃, 60%RH			
Tested by	Daniel Lin Test Date 2014/11/25					
Test Mode	LAN port 2 with Current Probe (100Mbps, TFGEN)					

No	Frequency	Correction Factor		g Value uA)		n Level uA)		nit uA)		rgin B)
110	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	1.27	12.64	6.71	13.91	7.98	53.00	40.00	-39.09	-32.02
2	0.22812	0.70	30.02	28.21	30.72	28.91	49.52	36.52	-18.80	-7.61
3	0.45859	0.41	20.81	18.90	21.22	19.31	43.72	30.72	-22.50	-11.41
4	0.68516	0.34	10.47	10.22	10.81	10.56	43.00	30.00	-32.19	-19.44
5	4.41016	0.39	12.28	10.66	12.67	11.05	43.00	30.00	-30.33	-18.95
6	23.91016	0.54	14.10	13.33	14.64	13.87	43.00	30.00	-28.36	-16.13

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz			
Input Power	230Vac [,] 50Hz	Environmental Conditions	20℃, 60%RH			
Tested by	Daniel Lin Test Date 2014/11/25					
Test Mode	LAN port 2 with Current Probe (1Gbps, TFGEN)					

No	Frequency	Correction Factor		g Value uA)		n Level uA)	Lir (dB	nit uA)	Maı (d	rgin B)
	(MHz)	(dB)	Q.P.	ÁV.	Q.P.	ÁV.	Q.P.	ÁV.	Q.P.	AV.
1	0.22812	0.70	30.25	28.55	30.95	29.25	49.52	36.52	-18.57	-7.27
2	0.45859	0.41	20.49	19.53	20.90	19.94	43.72	30.72	-22.82	-10.78
3	0.68516	0.34	10.50	9.66	10.84	10.00	43.00	30.00	-32.16	-20.00
4	4.39844	0.39	10.34	8.76	10.73	9.15	43.00	30.00	-32.27	-20.85
5	10.07813	0.57	7.44	6.97	8.01	7.54	43.00	30.00	-34.99	-22.46
6	23.91016	0.54	14.95	13.37	15.49	13.91	43.00	30.00	-27.51	-16.09

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

7 Radiated Disturbance up to 1 GHz

7.1 Limits

Fraguency (MHz)	Class A (at 10m)	Class B (at 10m)
Frequency (MHz)	dBuV/m	dBuV/m
30 - 230	40	30
230 - 1000	47	37

Notes: 1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

7.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ (V)	ESR-7	101240	Sep. 29, 2014	Sep. 28, 2015
Test Receiver ROHDE & SCHWARZ (H)	ESR-7	101264	Nov. 29, 2013	Nov. 28, 2014
BILOG Antenna SCHWARZBECK (V)	VULB9168	9168-148	Feb. 25, 2014	Feb. 24, 2015
BILOG Antenna SCHWARZBECK (H)	VULB9168	9168-149	Feb. 25, 2014	Feb. 24, 2015
Preamplifier Agilent (V)	8447D	2944A10636	Oct. 18, 2014	Oct. 17, 2015
Preamplifier Agilent (H)	8447D	2944A10637	Oct. 18, 2014	Oct. 17, 2015
Preamplifier Agilent	8449B	3008A01959	Oct. 18, 2014	Oct. 17, 2015
RF signal cable Woken (V)	8D-FB	Cable-CH(H)-01	Oct. 25, 2014	Oct. 24, 2015
RF signal cable Woken (H)	8D-FB	Cable-CH(V)-01	Oct. 25, 2014	Oct. 24, 2015
Software BV ADT	BV ADT_Radiated_ V 8.7.07	NA	NA	NA
Antenna Tower (V)	MFA-440	9707	NA	NA
Antenna Tower (H)	MFA-440	970705	NA	NA
Turn Table	DS430	50303	NA	NA
Controller (V)	MF7802	074	NA	NA
Controller (H)	MF7802	08093	NA	NA

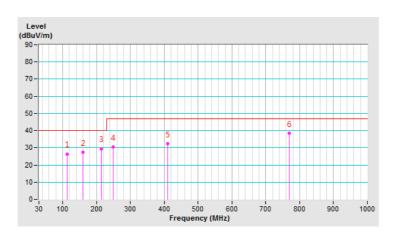
Notes: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 1.
- 3. The FCC Site Registration No. is 477732.
- 4. The IC Site Registration No. is IC 7450F-1.
- 5. The VCCI Site Registration No. is R-1893.

7.3 Test Arrangement

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited test facility. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is up to 1 GHz.

Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for quasi-peak detection (QP) at frequency up to 1GHz.

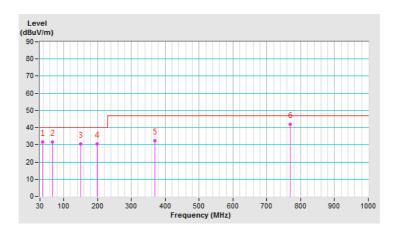


7.4 Test Results

Frequency Range	30MHz ~ 1GHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP), 120kHz
Environmental Conditions	23℃, 64%RH	Tested by	Scott Yang
Test Date	2014/11/20		

	Antenna Polarity & Test Distance : Horizontal at 10 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	112.84	26.49 QP	40.00	-13.51	4.00 H	132	43.54	-17.05	
2	160.91	27.49 QP	40.00	-12.51	3.50 H	35	41.23	-13.74	
3	214.41	29.53 QP	40.00	-10.47	4.00 H	332	45.58	-16.05	
4	248.26	30.49 QP	47.00	-16.51	3.00 H	134	44.47	-13.98	
5	410.36	32.23 QP	47.00	-14.77	2.50 H	322	41.23	-9.00	
6	770.00	38.46 QP	47.00	-8.54	4.00 H	270	40.08	-1.62	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value



Frequency Range	30MHz ~ 1GHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP), 120kHz
Environmental Conditions	23 ℃, 64 %RH	Tested by	Scott Yang
Test Date	2014/11/20		

	Antenna Polarity & Test Distance : Vertical at 10 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	38.44	31.79 QP	40.00	-8.21	1.50 V	60	46.60	-14.81	
2	67.69	31.55 QP	40.00	-8.45	2.00 V	72	47.16	-15.61	
3	149.46	30.52 QP	40.00	-9.48	1.00 V	296	44.00	-13.48	
4	198.74	30.41 QP	40.00	-9.59	1.00 V	261	46.29	-15.88	
5	369.08	32.51 QP	47.00	-14.49	1.00 V	119	41.80	-9.29	
6	770.00	41.93 QP	47.00	-5.07	2.50 V	307	42.91	-0.98	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

8 Radiated Disturbance above 1 GHz

8.1 Limits

Fraguency (CHz)	Class A (dBu	ıV/m) (at 3m)	Class B (dBuV/m) (at 3m)		
Frequency (GHz)	Average	Peak	Average	Peak	
1 to 3	56	76	50	70	
3 to 6	60	80	54	74	

Notes: 1. The lower limit shall apply at the transition frequencies.

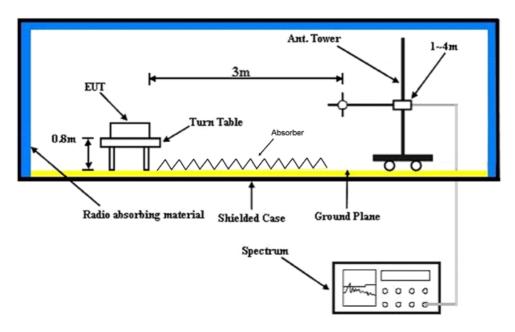
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Frequency Range (For unintentional radiators)

Highest frequency generated or used in the EUT or on which the EUT operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 108	1000
108-500	2000
500-1000	5000
Above 1000	Up to 5 times of the highest frequency or 6 GHz, whichever is less

8.2 Test Instruments

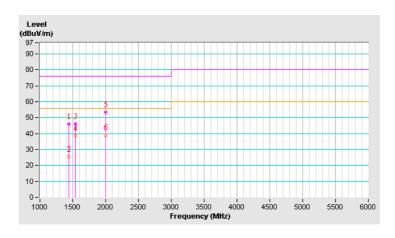
Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESCI	100424	Oct. 06, 2014	Oct. 05, 2015
Spectrum Analyzer Agilent	E4446A	MY44360124	Feb. 12, 2014	Feb. 11, 2015
BILOG Antenna SCHWARZBECK	VULB9168	9168-157	Feb. 26, 2014	Feb. 25, 2015
RF signal cable Woken	8D-FB	NA	Mar. 21, 2014	Mar. 20, 2015
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-404	Jan. 05, 2014	Jan. 04, 2015
Preamplifier Agilent (Above 1GHz)	8449B	3008A01959	Oct. 18, 2014	Oct. 17, 2015
RF signal cable HUBER+SUHNER	SUCOFLEX 104	MWX322+MWX2211308 S0295	Nov. 06, 2014	Nov. 05, 2015
Software BV ADT	BV ADT_Radiated_ V7.6.15.9.4	NA	NA	NA
Antenna Tower BV ADT	AT100	AT93021702	NA	NA
Turn Table BV ADT	TT100	TT93021702	NA	NA
Controller BV ADT	SC100	SC93021702	NA	NA
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	Jan. 09, 2014	Jan. 08, 2015
RF signal cable HUBER+SUHNNER	SUCOFLEX 102	38218/2+37433/2	Oct. 25, 2014	Oct. 24, 2015


- Notes: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 - 2. The 3dB beamwidth of the horn antenna is minimum 30 degree (or w = 1.6m at 3m distance) for 1~6 GHz.
 - 3. The test was performed in HwaYa Chamber 2.
 - 4. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
 - 5. The FCC Site Registration No. is 686814.
 - 6. The IC Site Registration No. is IC 7450F-2.
 - 7. The VCCI Site Registration No. is G-18.

8.3 Test Arrangement

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna can be varied from one meter to four meters, the height of adjustment depends on the EUT height and the antenna 3dB beamwidth both, to detect the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The spectrum analyzer system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.

Note: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection (PK) at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz for Average detection (AV) at frequency above 1GHz.

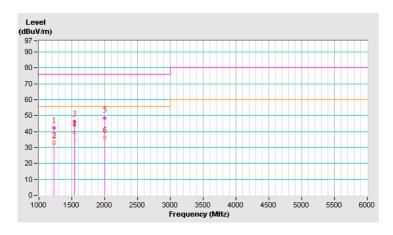

8.4 Test Results

Frequency Range	1GHz ~ 6GHz		Peak (PK) / Average (AV), 1MHz
Input Power	230Vac, 50Hz	Environmental Conditions	25℃, 65%RH
Tested by	James Chang	Test Date	2014/11/19

	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1439.53	45.91 PK	76.00	-30.09	1.00 H	328	54.31	-8.40
2	1439.53	25.31 AV	56.00	-30.69	1.00 H	328	33.71	-8.40
3	1540.03	46.13 PK	76.00	-29.87	1.50 H	259	54.19	-8.06
4	1540.03	38.72 AV	56.00	-17.28	1.50 H	259	46.78	-8.06
5	2000.00	53.45 PK	76.00	-22.55	1.00 H	186	60.13	-6.68
6	2000.00	39.05 AV	56.00	-16.95	1.00 H	186	45.73	-6.68

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value



Frequency Range	1GHz ~ 6GHz		Peak (PK) / Average (AV), 1MHz
Input Power	230Vac, 50Hz	Environmental Conditions	25℃, 65%RH
Tested by	James Chang	Test Date	2014/11/19

	Antenna Polarity & Test Distance : Vertical at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1231.96	42.16 PK	76.00	-33.84	1.50 V	3	51.32	-9.16
2	1231.96	32.71 AV	56.00	-23.29	1.50 V	3	41.87	-9.16
3	1539.98	46.34 PK	76.00	-29.66	1.81 V	357	54.40	-8.06
4	1539.98	39.66 AV	56.00	-16.34	1.81 V	357	47.72	-8.06
5	2000.11	48.68 PK	76.00	-27.32	1.00 V	322	55.36	-6.68
6	2000.11	36.04 AV	56.00	-19.96	1.00 V	322	42.72	-6.68

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

9 Harmonics Current Measurement

9.1 Limits

Limits fo	or Class A equipment		Limits for Class D equi	ipment
Harmonic Order n	Max. permissible harmonics current A	Harmonic Order n	Max. permissible harmonics current per watt mA/W	Max. permissible harmonics current A
	odd harmonics		Odd Harmonics on	
3	2.30	3	3.4	2.30
5	1.14	5	1.9	1.14
7	0.77	7	1.0	0.77
9	0.40	9	0.5	0.40
11	0.33	11	0.35	0.33
13	0.21	13	0.30	0.21
15≦n≦39	0.15 x 15/n	15≦n≦39	3.85/n	0.15 x 15/n
E	ven harmonics			
2	1.08			
4	0.43			
6	0.30			
8≦n≦40	0.23 x 8/n			

Notes: 1. Class A and Class D are classified according to section 5 of EN 61000-3-2.

2. According to section 7 of EN 61000-3-2, the above limits for all equipment except for lighting equipment having an active input power > 75 W and no limits apply for equipment with an active input power up to and including 75 W.

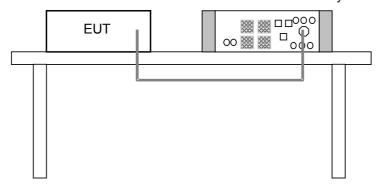
9.2 Classification of Equipment

The EUT is Class D in accordance with EN 61000-3-2 as follows:

Class A	Class B	Class C	Class D
Balanced three-phase equipment,	Portable tools.; Arc	Lighting	Equipment having a
Household appliances excluding	welding equipment	equipment.	specified power less than or
equipment as Class D, Tools excluding	which is not		equal to 600 W of the
portable tools, Dimmers for	professional		following types: Personal
incandescent lamps, audio equipment,	equipment		computers and personal
equipment not specified in one of the			computer monitors and
three other classes.			television receivers.

9.3 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Teseq AC Power Source	NSG1007	1323A0070	Aug. 20, 2014	Aug. 19, 2015
Teseq Signal Conditioning Unit- Lumped Impedance	CCN1000-1-LR1	1318A02119	Aug. 20, 2014	Aug. 19, 2015
Software	Win2100V4	NA	NA	NA


Notes: 1. The test was performed in Hwa Ya EMS Room.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

9.4 Test Arrangement

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- b. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

9.5 Test Results

Test Duration (mins)	3	Test Date	2014/11/28
	227.74Vrms/ 0.308Arms	Power Frequency	50Hz
· · · · · · · · · · · · · · · · · · ·		Power Factor	0.333
Environmental Conditions	23 °C, 56% RH	Tested by	Koei Chang

Note: 1. Limits are not specified for equipment with a rated power of 75W or less (other than lighting equipment).

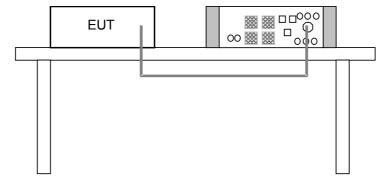
2. According to EN 61000-3-2 the manufacturer shall specify the power of the apparatus. This value shall be used for establishing limits. The specified power shall be within +/-10% of the measured power.

10 Voltage Fluctuations and Flicker Measurement

10.1 Limits

Test item	Limit	Note
P _{st}	1.0	P _{st:} short-term flicker severity.
P _{lt}	0.65	P _{lt:} long-term flicker severity.
T _{max} (ms)	500	$T_{\text{max:}}$ maximum time duration during the observation period that the voltage deviation d(t) exceeds the limit for d _c .
d _{max} (%)	4	d _{max:} maximum absolute voltage change during an observation period.
d _c (%)	3.3	d _{c:} maximum steady state voltage change during an observation period.

10.2 Test Instruments


Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Teseq AC Power Source	NSG1007	1323A0070	Aug. 20, 2014	Aug. 19, 2015
Teseq Signal Conditioning Unit- Lumped Impedance	CCN1000-1-LR1	1318A02119	Aug. 20, 2014	Aug. 19, 2015
Software	Win2100V4	NA	NA	NA

Notes: 1. The test was performed in Hwa Ya EMS Room.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

10.3 Test Arrangement

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.
- b. During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

Report No.: CE141111C02 Page No. 42 / 76 Report Format Version: 6.1.1

10.4 Test Results

Observation (T _p)	10 min.	Test Date	2014/11/28
Fundamental Voltage/Ampere	227.62 Vrms / 0.308 Arms	Power Frequency	50Hz
Power Consumption	20.4W	Power Factor	0.333
Environmental Conditions	23 °C, 56% RH	Tested by	Koei Chang

Test Parameter	Measurement Value	Limit	Remarks
P_{st}	0.064	1.00	Pass
P _{lt}	0.028	0.65	Pass
T _{max} (ms)	0	500	Pass
d _{max} (%)	0	4	Pass
d _c (%)	0	3.3	Pass

Note: (1) P_{st} means short-term flicker indicator.

- (2) P_{It} means long-term flicker indicator.
 (3) T_{max} means accumulated time value of d(t) with a deviation exceeding 3.3 %.
 (4) d_{max} means maximum relative voltage change.
 (5) d_c means maximum relative steady-state voltage change.

11 General Immunity Requirements

EN 5502	4:2010, Immunity	requiren	nents	
Clause	Reference standard	Table	Test specification	Performance Criterion
4.2.1	EN 61000-4-2 ESD	1.3	Enclosure port: ±8kV Air discharge, ±4kV Contact discharge	В
4.2.3.2	EN 61000-4-3 RS	1.2	Enclosure port: 80-1000 MHz, 3V/m, 80% AM (1kHz)	Α
4.2.2	EN 61000-4-4	2.3	Signal ports and telecommunication ports: xDSL equipment: ±0.5kV, 5/50 (T _r /T _h) ns, 100kHz others: ±0.5kV, 5/50 (T _r /T _h) ns, 5kHz	В
	EFT	3.3	Input DC power port: ±0.5kV, 5/50 (T _r /T _h) ns, 5kHz	
		4.5	Input AC Power ports: ±1kV, 5/50 (T _r /T _h) ns, 5kHz	
		2.2	Signal and telecommunication ports (direct to outdoor cables): 10/700 (5/320) (T _r /T _h) µs w/o primary protectors: ±1kV, or with primary protectors fitted: ±4kV	С
4.2.5	EN 61000-4-5 Surge	3.2	Input DC power port (direct to outdoor cables): 1.2/50 (8/20) (T _r /T _h) µs Line to earth: ±0.5kV	_
		4.4	Input AC Power ports: 1.2/50 (8/20) (T _r /T _h) μs, Line to line: ±1kV Line to earth: ±2kV	В
		2.1	Signal and telecommunication ports(cable length > 3m): 0.15-80 MHz, 3V, 80% AM (1kHz)	
4.2.3.3	EN 61000-4-6 CS	3.1	Input DC power port: 0.15-80 MHz, 3V, 80% AM (1kHz)	Α
		4.1	Input AC Power ports: 0.15-80 MHz, 3V, 80% AM (1kHz)	
4.2.4	EN 61000-4-8 PFMF	1.1	Enclosure port: 50 or 60 Hz, 1A/m	Α
4.2.6	EN 61000-4-11 Dips & Interruptions	4.2	Input AC Power ports: Voltage Dips: >95% reduction – 0.5 period 30% reduction – 25 periods	B C
-		4.3	Input AC Power ports: Voltage Interruptions:	
		l	>95% reduction – 250 periods	С

11.1 Performance Criteria

General Performance Criteria

Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion B

After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test. If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Product Specific Performance Criteria

The particular performance criteria which are specified in the normative annexes of EN 55024 take precedence over the corresponding parts of the general performance criteria.

Where particular performance criteria for specific functions are not given, then the general performance criteria shall apply.

Function	Performance criteria A	Performance criteria B	Performance criteria C
Read, write and storage of data	During the test storage devices shall maintain normal operation both in read/write and in standby conditions.	During and after the test failures which can be recovered by read and write retries are permissible (temporary delay in processing caused by this process is acceptable). Normal operation of the EUT shall be restored after the test, self-recovery to the conditions immediately prior to the application of the test is accepted where this is a normal means of recovery. In these cases, operator response is permitted to re-initialise an operation.	Failures during test that result in a delay in processing or a system abort, which after testing can be recovered to normal operation by reset or reboot, are permissible.
Data display	During the test, when seen from the normal viewing distance, the EUT shall operate with no change beyond the manufacturer's specification, in flicker, colour, focus and jitter (except for the power frequency magnetic field test).	Screen disturbances during the application of the test are permissible if they self-recover after removal of the external disturbance.	Failures during the test that cannot self-recover after removal of the external disturbance, but which can be recovered after the test to normal operation by reset or reboot are permissible.
Data input	During testing unintended input from an input device is not allowed. During testing input devices shall maintain the specified quality image data.	During testing keyboard/mouse "lock up" is not allowed. For EUT with manually inputted data that can be confirmed by reading the display, errors are permissible during testing if they can be recognised by the operator and easily corrected.	Failures during test that result in a delay in processing or a system abort, which after testing can be recovered to normal operation by reset or reboot, are permissible.
Data printing	During testing printers shall maintain the specified printing quality and normal operation.	During testing no degradation of the printing quality beyond the manufacturer's specification (such as distortion of character(s) or missing pixels) is permissible. A paper feed failure is allowed if after removal of the jammed sheets the job is automatically recovered and there is no loss of printed information.	During testing printing errors or omission of character(s) which require reprinting are permissible. Input/output failures that occur during testing that can be recovered to normal operation after testing by reset or reboot are also permissible.
Data processing	During testing failures which do not influence the specified operation within the product specification, and which do not prevent automatic recovery are permissible.	During testing failures which are recovered automatically but cause temporary delay in processing are permissible.	Failures during testing that - result in a delay in processing after the external disturbance is removed, but which can be recovered after testing to normal operation by a reset or reboot - result in a system abort, which can be recovered to normal operation after testing by reset or reboot, - are followed by alarms and can be recovered to normal operation by the operator's intervention after testing are permissible.

12 Electrostatic Discharge Immunity Test (ESD)

12.1 Test Specification

Basic Standard: EN/IEC 61000-4-2 **Discharge Impedance:** 330 ohm / 150 pF

Discharge Voltage: Air Discharge: ±2, ±4, ±8kV (Direct)

Contact Discharge: ±2, ±4kV (Direct/Indirect)

Number of Discharge: Air – Direct: 10 discharges per location (each polarity)

Contact - Direct & Indirect: 25 discharges per location (each polarity) and

min. 200 times in total

Discharge Mode: Single Discharge Discharge Period: 1-second minimum

12.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Electronic Discharge Simulator (KeyTek)	MZ-151EC	0310225	Jun. 09, 2014	Jun. 08, 2015

Notes: 1. The test was performed in Hwa Ya ESD Room 4.

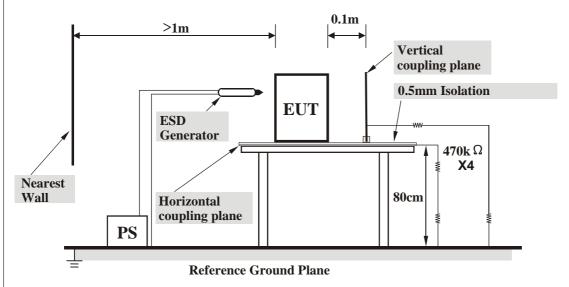
2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

12.3 Test Arrangement

The discharges shall be applied in two ways:

Contact discharges to the conductive surfaces and coupling planes:

The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the horizontal coupling plane. The remaining three test points shall each receive at least 50 direct contact discharges. If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.


b. Air discharges at slots and apertures and insulating surfaces:

On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled by the user. A minimum of 10 single air discharges shall be applied to the selected test point for each such area.

The basic test procedure was in accordance with EN/IEC 61000-4-2:

- a. Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the EUT.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the EUT. The ESD generator was positioned at a distance of 0.1 meters from the EUT with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the **V**ertical **C**oupling **P**lane in sufficiently different positions that the four faces of the EUT were completely illuminated. The **VCP** (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.

Table-top Equipment

The configuration consisted of a wooden table 0.8 meters high standing on the **G**round **R**eference **P**lane. The **GRP** consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A **H**orizontal **C**oupling **P**lane (1.6m x 0.8m) was placed on the table and attached to the **GRP** by means of a cable with $940k\Omega$ total impedance. The equipment under test, was installed in a representative system as described in section 7 of EN/IEC 61000-4-2, and its cables were placed on the **HCP** and isolated by an insulating support of 0.5mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

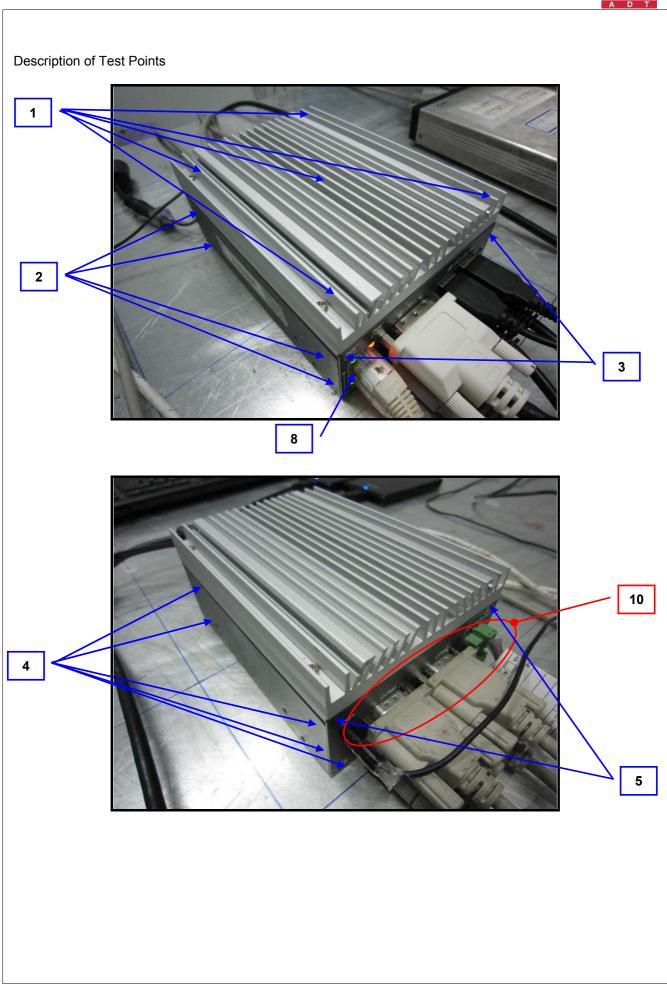
12.4 Test Results

Input Power	230 Vac, 50 Hz	Test Date	2014/11/27
Environmental Conditions	22 °C, 53% RH 988 mbar	Tested by	Leo Chan

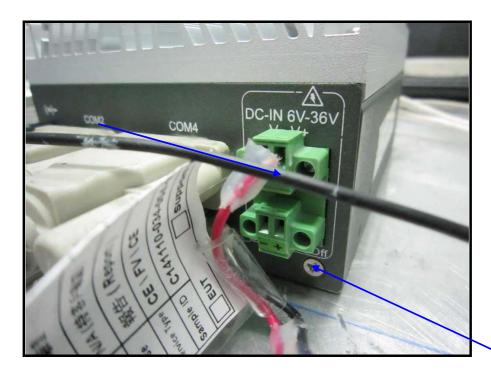
Test Results of Direct Application						
Discharge Level (kV)	Polarity (+/-)	Test Point	Contact Discharge	Air Discharge	Performance Criterion	
2, 4	+/-	1-7	Note 1	NA	Α	
2	+/-	8	Note 1	NA	Α	
4	+/-	8	Note 3	NA	В	
2, 4, 8	+/-	9	NA	Note 1	Α	
2, 4	+/-	10-12	NA	Note 1	Α	
8	+/-	10-11	NA	Note 2	В	
8	+/-	12	NA	Note 3	В	

Description of test points of direct application: Please refer to following page for representative mark only.

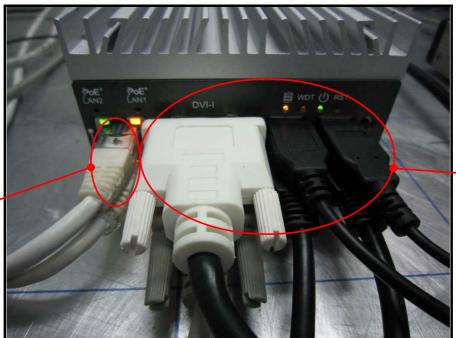
Test Results of Indirect Application					
Discharge Polarity Test Point Horizontal Vertical Coupling Performance Coupling Plane Criterion					
2, 4	+/-	Four Sides	Note 1	Note 1	Α

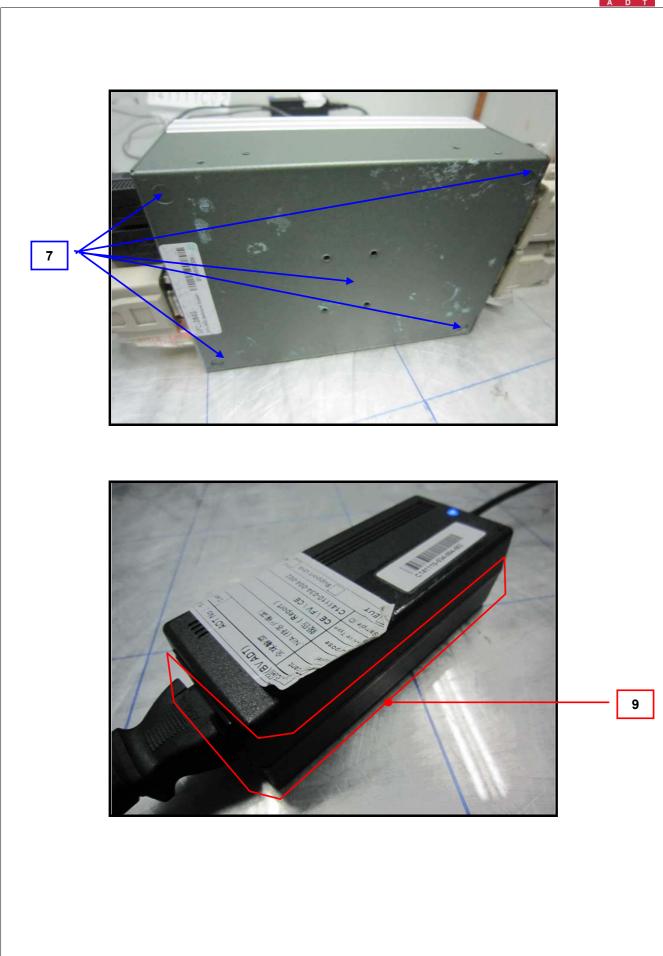

Description of test points of indirect application:

- 1. Front side
- 2. Rear side
- 3. Right side
- 4. Left side


Note: 1. The EUT function was correct during the test.

- 2. The USB HDD R/W function held during the test, but could self-recover after the test.
- 3. The LAN PING had "request time out" message during the test, but could self-recover after the test.




6

11

12

13 Radiated, Radio-frequency, Electromagnetic Field Immunity Test (RS)

13.1 Test Specification

Basic Standard: EN/IEC 61000-4-3 Frequency Range: 80 MHz - 1000 MHz

Field Strength: 3 V/m

Modulation: 1kHz Sine Wave, 80%, AM Modulation Frequency Step: 1 % of preceding frequency value

Polarity of Antenna: Horizontal and Vertical

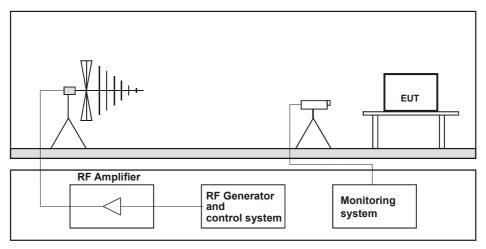
Antenna Height: 1.55m

Dwell Time: 3 seconds

13.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
BONN Power Amp	BLMA 1060-100/50D	118694	NA	NA
BBA Power Amp	B250C125	101011	NA	NA
Power Sensor	NRP-Z91	101572	Jan. 22, 2014	Jan. 21, 2015
Power Sensor	NRP-Z91	101573	Jan. 22, 2014	Jan. 21, 2015
Signal Generator	SMB100A	105801	Jan. 16, 2014	Jan. 15, 2015
R&S Software	EMC32 Version 8.52.0	NA	NA	NA
Stacked Log-Per Antenna	STLP9149	9149-141	NA	NA
High GAIN LOG-Periodic Antenna	HL046E	100114	NA	NA

Notes: 1. The test was performed in Hwa Ya RS Room 2.


- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The transmit antenna was located at a distance of 3 meters from the EUT.

13.3 Test Arrangement

The test procedure was in accordance with EN/IEC 61000-4-3.

- a. The testing was performed in a modified semi-anechoic chamber.
- b. The frequency range is swept from 80 MHz to 1000 MHz, with the signal 80% amplitude modulated with a 1kHz sine wave.
- c. The field strength level was 3 V/m.
- d. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

Table-top Equipment

The EUT installed in a representative system as described in section 7 of EN/IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

13.4 Test Results

Input Power	230 Vac, 50 Hz	Test Date	2014/12/11
Environmental Conditions	22 °C, 60% RH	Tested by	Tom Tang

Frequency (MHz)	Polarity	Azimuth(°)	Applied	d Field Strength	Observation	Performance
riequency (MHZ)	Polarity	Azimum ()	(V/m)	Modulation	Observation	Criterion
80 -1000	V&H	0	3	80% AM (1kHz)	Note 1	Α
80 -1000	V&H	90	3	80% AM (1kHz)	Note 1	Α
80 -1000	V&H	180	3	80% AM (1kHz)	Note 1	Α
80 -1000	V&H	270	3	80% AM (1kHz)	Note 1	Α

Note: 1. The EUT function was correct during the test.

14 Electrical Fast Transient/Burst Immunity Test (EFT)

14.1 Test Specification

Basic Standard: EN/IEC 61000-4-4

Test Voltage: Signal / telecommunication port: ±0.5kV

Input DC power port: NA Input AC power port: ±1kV

Impulse Repetition Frequency: xDSL telecommunication port: 100kHz

others: 5kHz

Impulse Wave Shape: 5/50 ns

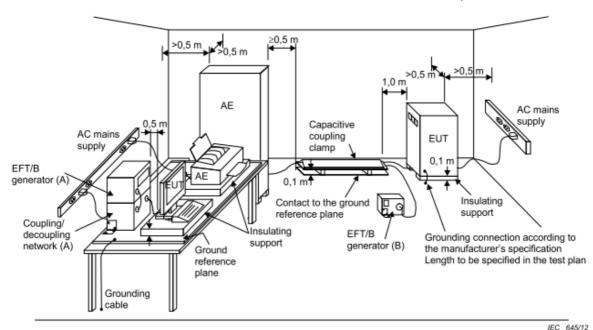
Burst Duration: 0.75 ms for 100kHz Repetition Frequency

15 ms for 5kHz Repetition Frequency

Burst Period: 300 ms Test Duration: 1 min.

14.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
EMC-Partner EFT Generator	TRA2000EFT-C1	623	May 16, 2014	May 15, 2015
EMC-Partner Capacitive Coupling clamp	CN-EFT1000	364	May 16, 2014	May 15, 2015
EFT Adapter WONPRO	WA	EF1Ada-001	NA	NA
Software	EMC-Partner GENECS	NA	NA	NA


Notes: 1. The test was performed in Hwa Ya EFT Room 1.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

14.3 Test Arrangement

- a. Both positive and negative polarity discharges were applied.
- b. The distance between any coupling devices and the EUT should be 0.5 m for table-top equipment testing, and 1.0 m for floor standing equipment.
- c. The duration time of each test sequential was 1 minute.
- d. The transient/burst waveform was in accordance with EN/IEC 61000-4-4, 5/50 ns.

Note:

- (A) location for supply line coupling
- (B) location for signal lines coupling

14.4 Test Results

Input Power	230 Vac, 50 Hz	Test Date	2014/11/29
Environmental Conditions	23 °C, 53% RH	Tested by	Davis Chen

Input AC power port

Voltage (kV)	Test Point	Polarity (+/-)	Observation	Performance Criterion
1	L1	+/-	Note 1	Α
1	L2	+/-	Note 1	Α
1	PE	+/-	Note 1	Α
1	L1-L2-PE	+/-	Note 1	Α

Signal / telecommunication port

Voltage (kV)	Test Point	Polarity (+/-)	Observation	Performance Criterion
0.5	LAN 1	+/-	Note 1	Α
0.5	LAN 2	+/-	Note 1	Α

Note: 1. The EUT function was correct during the test.

15 Surge Immunity Test

15.1 Test Specification

Basic Standard: EN/IEC 61000-4-5

Wave-Shape: Signal / telecommunication port (direct to outdoor cables*):

10/700 μs Open Circuit Voltage 5/320 μs Short Circuit Current

Input DC power port (direct to outdoor cables*):

1.2/50 µs Open Circuit Voltage 8/20 µs Short Circuit Current

Input AC power port:

1.2/50 µs Open Circuit Voltage 8/20 µs Short Circuit Current

Test Voltage: Signal and telecommunication ports**:

w/o primary protectors: NA, with primary protectors fitted: NA

Input DC power port: Line to earth or ground: NA

Input AC power ports: Line to line: ±0.5, ±1kV,

Line to earth or ground: ±0.5, ±1, ±2kV

AC Phase Angle (degree): 0°, 90°, 180°, 270° Pulse Repetition Rate: 1 time / 60 sec.

Number of Tests: 5 positive and 5 negative at selected points

* This test is only applicable only to ports, which according to the manufacturer's specification, may connect directly to outdoor cables.

15.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Modular Impulse Generator EMC-Partner	MIG0603IN3	352	Sep. 02, 2014	Sep. 01, 2015
Universal Surge Coupling De-Coupling Network EMC-Partner	CDN UTP8	011	Sep. 02, 2014	Sep. 01, 2015
Surge Adapter WONPRO	WA	SU1 Ada-001	NA	NA

Notes: 1. The test was performed in Hwa Ya Surge Room 2.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

15.3 Test Arrangement

a. Input AC/DC Power ports:

The surge is to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

Report No.: CE141111C02 Page No. 57 / 76 Report Format Version: 6.1.1

^{**} For ports where primary protection is intended, surges are applied at voltages up to 4 kV with the primary protectors fitted. Otherwise the 1 kV test level is applied without primary protection in place.

For double-insulated products without PE or external earth connections, the test shall be done in a similar way as for grounded products but without adding any additional external grounded connections. If there are no other possible connections to earth, line-to-ground tests may be omitted.

- b. Signal and telecommunication ports,
 - Unshielded unsymmetrical interconnection lines:

The surge is applied to the lines via the capacitive coupling. The coupling / decoupling networks shall not influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length.

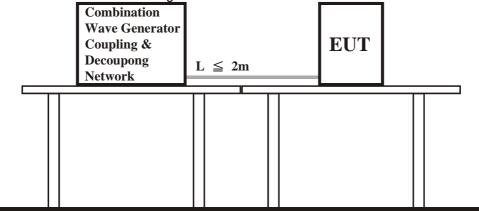
Unshielded symmetrical interconnections communication lines:

The surge is applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor cannot be specified. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length.

High speed communications lines

Prior to the test, the correct operation of the port shall be verified; the external connection shall then be removed and the surge applied directly to the port's terminals with no coupling /decoupling network. After the surge, the correct operation of the port shall again be verified.

- Shielded lines:
 - Direct application,


The EUT is isolated from ground and the surge is applied to its metallic enclosure; the termination (or auxiliary equipment) at the port(s) under test is grounded. This test applies to equipment with single or multiple shielded cables.

Rules for application of the surge to shielded lines:

- a) Shields grounded at both ends
 - The surge injection on the shield.
- b) Shields grounded at one end
 - If in the installation the shield is connected only at the auxiliary equipment, test shall be done in that configuration but with the generator still connected to the EUT side. If cable lengths allow, the cables shall be on insulated supports 0,1 m above the ground plane or cable tray.

For products which do not have metallic enclosures, the surge is applied directly to the shielded cable.

- Alternative coupling method for testing single cables in a multi-shield configuration, Surges are applied in close proximity to the interconnection cable under test by a wire. The length of the cable between the port(s) under test and the device attached to the other end of the cable shall be the lesser of: the maximum length permitted by the EUT's specification, or 20 m. Where the length exceeds 1 m, excess lengths of cables shall be bundled at the approximate centre of the cables with the bundles 30 cm to 40 cm in length.

15.4 Test Results

Input Power	230 Vac, 50 Hz	Test Date	2014/11/29
Environmental Conditions	23 °C, 53% RH	Tested by	Davis Chen

Input AC power port

Voltage (kV)	Test Point	Polarity (+/-)	Observation	Performance Criterion
0.5, 1	L1-L2	+/-	Note 1	Α
0.5, 1, 2	L1-PE	+/-	Note 1	Α
0.5, 1, 2	L2-PE	+/-	Note 1	Α

Note: 1. The EUT function was correct during the test.

16 Immunity to Conducted Disturbances Induced by RF Fields (CS)

16.1 Test Specification

Basic Standard: EN/IEC 61000-4-6 Frequency Range: 0.15 MHz - 80 MHz

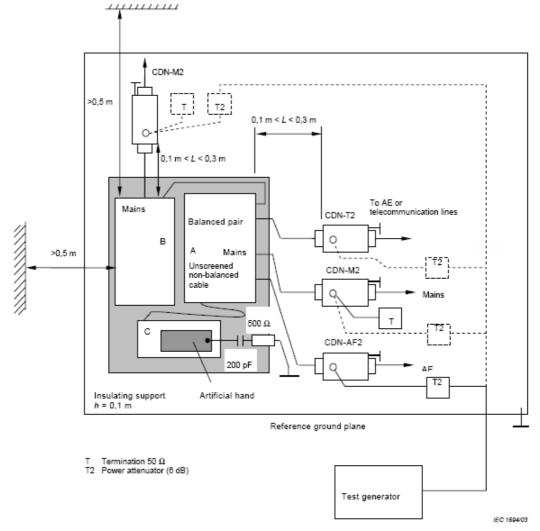
Voltage Level: 3 V

Modulation: 1kHz Sine Wave, 80%, AM Modulation Frequency Step: 1 % of preceding frequency value

Dwell Time 3 seconds

16.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
FCC POWER LINE COUPLING DECOUPLING NETWORK	FCC-801-M1-25A	03030	May 22, 2014	May 21, 2015
FCC POWER LINE COUPLING DECOUPLING NETWORK	FCC-801-M2-25A	03049	Nov. 07, 2014	Nov. 06, 2015
FCC POWER LINE COUPLING DECOUPLING NETWORK	FCC-801-M2-25A	03050	Nov. 07, 2014	Nov. 06, 2015
FCC POWER LINE COUPLING DECOUPLING NETWORK	FCC-801-M3-25A	03056	Nov. 07, 2014	Nov. 06, 2015
FCC POWER LINE COUPLING DECOUPLING NETWORK	FCC-801-M3-25A	03057	Nov. 07, 2014	Nov. 06, 2015
FCC SIGNAL LINE POWER LINE COUPLING DECOUPLING NETWORK	FCC-801-T2	03030	Nov. 07, 2014	Nov. 06, 2015
FCC SIGNAL LINE POWER LINE COUPLING DECOUPLING NETWORK	FCC-801-T4	03031	Nov. 07, 2014	Nov. 06, 2015
FCC SIGNAL LINE POWER LINE COUPLING DECOUPLING NETWORK	FCC-801-T8	03032	Nov. 07, 2014	Nov. 06, 2015
EMI Injection Clamp	F203I-23MM	434	Nov. 07, 2014	Nov. 06, 2015
Amplifier Research Power Amplifier	75A250AM2	307804	NA	NA
BOONTON 4232ARF POWER METER	4232A-01-02	104302	Nov. 14, 2014	Nov. 13, 2015
R&S Signal Generator	SML01	102148	Nov. 14, 2014	Nov. 13, 2015
Software	ADT_CS_V37	NA	NA	NA
POWER SENSOR	51011-EMC	30028	Nov. 14, 2014	Nov. 13, 2015
POWER SENSOR	51011-EMC	33029	Nov. 14, 2014	Nov. 13, 2015


Notes: 1. The test was performed in Hwa Ya CS Room 1.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

16.3 Test Arrangement

- a. The EUT shall be tested within its intended operating and climatic conditions.
- b. An artificial hand was placed on the hand-held accessory and connected to the ground reference plane.
- c. One of the CDNs not used for injection was terminated with 50 ohm, providing only one return path. All other CDNs were coupled as decoupling networks.
- d. The frequency range is swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal is modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. Where the frequency is swept incrementally, the step size shall not exceed 1 % of the preceding frequency value.
- e. Attempts should be made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

Note: 1. The EUT clearance from any metallic obstacles shall be at least 0,5 m.

2. Interconnecting cables (≤ 1 m) belonging to the EUT shall remain on the insulating support.

16.4 Test Results

Input Power	230 Vac, 50 Hz	Test Date	2014/12/1
Environmental Conditions	23 °C, 58% RH	Tested by	Davis Chen

Frequency (MHz)	Level (Vrms)	Tested Line	Injection Method	Return Path	Observation	Performance Criterion
0.15 – 80	3	Power	CDN-M3	EM-CLlamp	Note 1	Α
0.15 - 80	3	LAN 1	EM-CLlamp	CDN-M3	Note 1	Α
0.15 – 80	3	LAN 2	EM-CLlamp	CDN-M3	Note 1	Α

Note: 1. The EUT function was correct during the test.

17 Power Frequency Magnetic Field Immunity Test

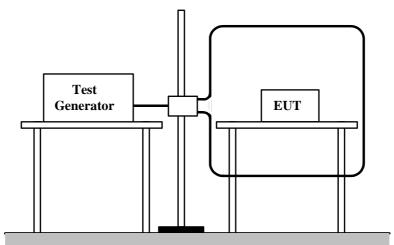
17.1 Test Specification

Basic Standard: EN/IEC 61000-4-8

Frequency Range: 50Hz
Field Strength: 1 A/m
Observation Time: 1 minute

Inductance Coil: Rectangular type, 1mx1m

17.2 Test Instruments


Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
F.W.BELL 4190 Gaussmeter	4190	0743043	Feb. 13, 2014	Feb. 12, 2015
Teseq AC Power Source	NSG1007	1323A0070	Aug. 20, 2014	Aug. 19, 2015
Teseq Signal Conditioning Unit- Lumped Impedance	CCN1000-1-LR1	1318A02119	Aug. 20, 2014	Aug. 19, 2015
Teseq Multi turn Magnetic	INA702	268	Aug. 20, 2014	Aug. 19, 2015

Notes: 1. The test was performed in Hwa Ya EMS Room.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

17.3 Test Arrangement

- a. The equipment is configured and connected to satisfy its functional requirements.
- b. The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.
- c. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

Tabletop equipment

The equipment shall be subjected to the test magnetic field (see example as above).

The plane of the inductive coil shall then be rotated by 90° in order to expose the EUT to the test field with different orientations.

17.4 Test Results

Input Power	230 Vac, 50 Hz	Test Date	2014/11/28
Environmental Conditions	23 °C, 56% RH	Tested by	Koei Chang

Application	Frequency (Hz)	Field Strength (A/m)	Observation	Performance Criterion
X - Axis	50	1	Note 1	Α
Y - Axis	50	1	Note 1	Α
Z - Axis	50	1	Note 1	Α

Note: 1. The EUT function was correct during the test.

18 Voltage Dips and Interruptions

18.1 Test Specification

Basic Standard: EN/IEC 61000-4-11

Test levels: Voltage Dips:

>95% reduction – 0.5 period 30% reduction – 25 periods

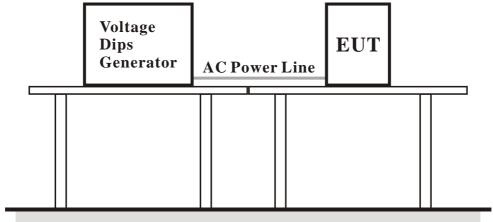
Voltage Interruptions:

>95% reduction - 250 periods

Interval between Event: Minimum ten seconds

Sync Angle (degrees): 0° / 180° Test Cycle: 3 times

18.2 Test Instruments


Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Teseq AC Power Source	NSG1007	1323A0070	Aug. 20, 2014	Aug. 19, 2015
Teseq Signal Conditioning Unit- Lumped Impedance	CCN1000-1-LR1	1318A02119	Aug. 20, 2014	Aug. 19, 2015
Software	Win2100V4	NA	NA	NA

Notes: 1. The test was performed in Hwa Ya EMS Room.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

18.3 Test Arrangement

The EUT shall be tested for each selected combination of test levels and duration with a sequence of 3 dips/interruptions with intervals of 10 s minimum (between each test event). Each representative mode of operation shall be tested. Abrupt changes in supply voltage shall occur at 0 dregee crossover point of the voltage waveform.

18.4 **Test Results**

Input Power	100-240 Vac, 50 Hz	Test Date	2014/11/28
Environmental Conditions	23 °C, 56% RH	Tested by	Koei Chang

Input Power for testing: 230 Vac, 50 Hz (Nominal input Voltage)								
Voltage Reduction (%)	Duration (period)	Interval (sec)	Times	Observation	Performance Criterion			
>95	0.5	10	3	Note 1	Α			
30	25	10	3	Note 1	Α			
>95	250	10	3	Note 2	С			

Input Power for testing: 240 Vac, 50 Hz (Maximum rated input voltage)							
Voltage Reduction (%)	Duration (period)	Interval (sec)	Times	Observation	Performance Criterion		
>95	0.5	10	3	Note 1	Α		
30	25	10	3	Note 1	Α		
>95	250	10	3	Note 2	С		

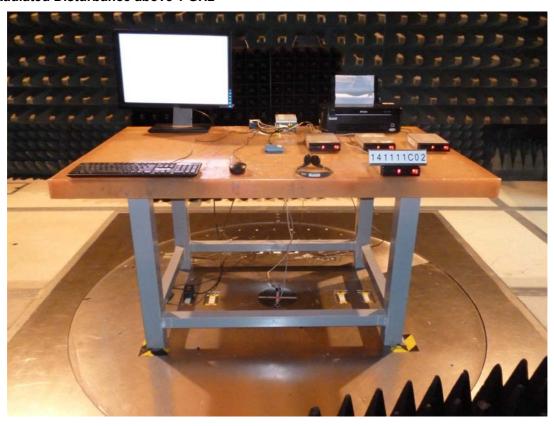
Input Power for testing: 100 Vac, 50 Hz (Minimum rated input voltage)							
Voltage Reduction (%)	Duration (period)	Interval (sec)	Times	Observation	Performance Criterion		
>95	0.5	10	3	Note 1	Α		
30	25	10	3	Note 1	Α		
>95	250	10	3	Note 2	С		

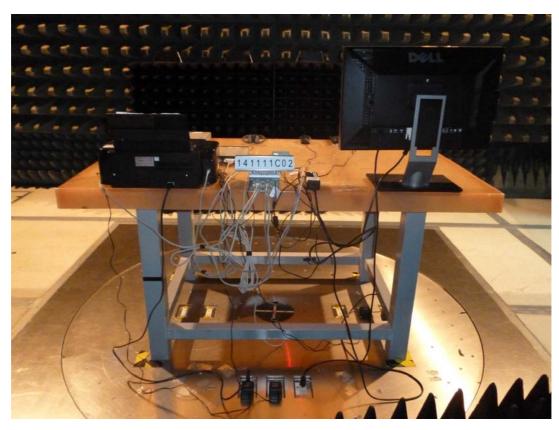
Note: 1. The EUT function was correct during the test.
3. The EUT shut down during the test, and must be recovered manually.

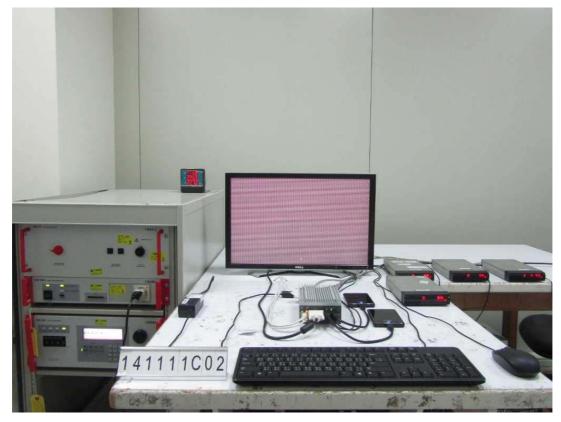
19 Pictures of Test Arrangements

19.1 Conducted Disturbance at Mains Ports

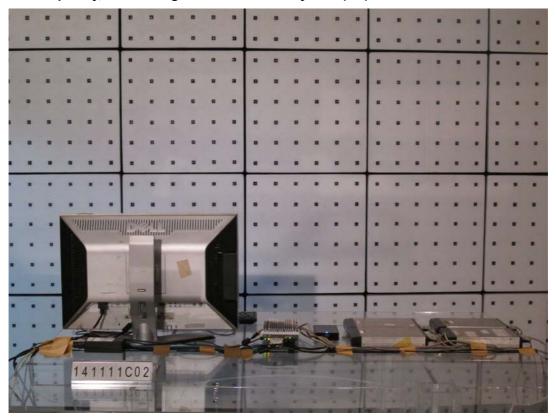
19.2 Conducted Disturbance at Telecommunication Ports


19.3 Radiated Disturbance up to 1 GHz




19.4 Radiated Disturbance above 1 GHz

19.5 Harmonics Current, Voltage Fluctuations and Flicker Measurement



19.6 Electrostatic Discharge Immunity Test (ESD)

19.7 Radio-frequency, Electromagnetic Field Immunity Test (RS)

19.8 Electrical Fast Transient/Burst Immunity Test (EFT)

19.9 Surge Immunity Test

19.10 Conducted Disturbances Induced by RF Fields (CS)

Mains ports

Signal ports

19.11 Power Frequency Magnetic Field Immunity Test (PFMF)

19.12 Voltage Dips and Interruptions

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauVeritas.com
Web Site: www.bureauVeritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---